Acta Cryst. (1972). B28, 1872

The Crystal Structures of Disordered Crystals of Adducts of Diphenylmercury with Bidentate Ligands

BY A. J. CANTY* AND B. M. GATEHOUSE

Chemistry Department, Monash University, Clayton, Victoria, Australia

(Received 29 December 1971)

The crystal structures of two adducts of diphenylmercury with neutral bidentate nitrogen donor atom ligands have been determined. The crystals are disordered in a manner giving rise to diffuse reflexions for which k is odd. The crystal of diphenylbis-(2,4,7,9-tetramethyl-1,10-phenanthroline)mercury(II) studied has a = 21.09, b = 14.54, c = 14.65 Å, $\beta = 120^{\circ}34'$, Z = 4, and space group Cm. Crystals of diphenylbis-(2,9-dimethyl-1,10-phenanthroline)mercury(II) have a = 15.42, b = 14.28, c = 14.55 Å, $\alpha \simeq \beta \simeq \gamma \simeq 90^{\circ}$, Z = 4, and space group P1 with approximate Pm symmetry. Both adducts have their planar ligands in (040) with the C-Hg-C units of Ph₂Hg moieties aligned in the [010] direction. Each Ph₂Hg moiety has one ligand adjacent to it with Hg-N distances of 2.8-3.0 Å, and one-half of the ligands in the crystals do not have a mercury atom adjacent to their nitrogen atoms. Within the unit cell of each adduct every second (040) plane has 0.5 occupancy for two Ph₂Hg moieties with mercury atoms in those planes, and every other (040) plane has 0.8 and 0.2 occupancy for two Ph₂Hg moieties in those planes, giving one Ph₂Hg for every two ligands.

Introduction

The adducts Ph_2HgL_2 [L=1,10-phenanthroline, 2,9dimethyl-1,10-phenanthroline (dmp), and 2,4,7,9-tetramethyl-1,10-phenanthroline (tmp)] have stoichiometry suggesting six-coordination for mercury (Deacon & Canty, 1969), whereas coordination numbers lower than six are found for isolable complexes of diarylmercury compounds forming more stable complexes in solution with the same ligands (see *e.g.* Canty & Deacon, 1971). Deacon & Canty (1969) commented that no definite evidence for coordination of ligands could be found and that the adducts may well be 'lattice compounds'. Uncertainty of the nature of the adducts has prompted this study.

Preliminary experimental results

An infrared spectrum and melting point confirmed that crystals of $Ph_2Hg(tmp)_2$, $(C_6H_5)_2Hg(C_{16}H_{16}N_2)_2$, grown from benzene/hexane were identical with the pure compound. Crystals of $Ph_2Hg(dmp)_2$,

 $(C_6H_5)_2Hg(C_{14}H_{12}N_2)_2$, were obtained from an analytically pure sample of the adduct dissolved in benzene, and had melting point and powder photographs identical with those of the sample. Crystals of both adducts have similar crystal habit, being colourless and elongated in the [001] direction, and all crystals chosen for X-ray studies extinguished polarized light when viewed normal to the two pairs of crystal faces parallel to the needle axis.

(a) Diphenylbis-(2,9-dimethyl-1,10-phenanthroline)mercury(II)

Crystals of $Ph_2Hg(dmp)_2$ mounted about the needle axis gave oscillation photographs with streaking normal to layer lines but not passing through all reflexions. Equi-inclination Weissenberg photographs for reciprocal lattice levels $hkO-h_1k_12$ and Okl-2kl have diffuse lines through reflexions along festoons with odd k and extending in the a^* and c^* directions respectively (Fig. 1). Each reflexion with odd k is present as a maximum in a diffuse line whereas all even k reflexions are sharp and generally of higher intensity.

Weissenberg photographs indicate triclinic symmetry, although cell angles of *ca*. 90° and similar intensities of reflexions in each octant of reciprocal space suggest that the structure has symmetry close to orthorhombic. The crystals have unit-cell dimensions a=15.42, b=14.28, c=14.55, $\alpha \simeq \beta \simeq \gamma \simeq 90^\circ$, U=3203.9 Å³, and $D_{\text{meas}}=1.60$ g.cm⁻³ (by flotation), $D_{\text{calc}}=1.59$ g.cm⁻³ for Z=4. The cell angles are only 8', 8', and 5' ($\pm 4'$) removed from 90° for α , β , and γ respectively. Since the differences in intensity of equivalent reflexions for monoclinic symmetry are slight, it was not possible to decide whether 90° < α , β , or $\gamma > 90^\circ$ from Weissenberg photographs obtained with the crystal oscillated about different axes. The conditions for reflexions to be observed:

$$hk0: h + k = 2n$$

$$0k0: k = 4n$$

$$00l: l = 2n$$

are not all required together for space groups of orthorhombic or lower symmetry.

^{*} Present address: University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England.

(b)

Fig. 1. Weissenberg photographs from a crystal of $Ph_2Hg(dmp)_2$. (a) A region of the reciprocal lattice layer hk0. (b) A region of the reciprocal lattice layer 2kl.

A. J. CANTY AND B. M. GATEHOUSE

Table 1. Comparison of F_o and F_c for Ph₂Hg(tmp)₂

Sharp reflexions are presented first. Unobserved reflexions are indicated with an asterisk.

Q 0 149 143 4 0 62 72 6 0 22 72 8 0 160 139 9 0 160 139 14 0 160 139 14 0 160 139 2 1 3 440 2 1 3 440 2 2 1 3 440 2 2 1 3 440 2 2 1 3 440 2 2 3 440 451 2 2 1 3 440 2 2 10 3 440 3 10 3 10 440 4 2 2 10 10 4 10 10 10 10 4 10 10 10 10	4 79 17- 8 6 141 145 10 0 310 240 20 372 381 -2 0 372 381 -2 10 39 34 -2 10 39 34 -2 10 39 34 -2 10 39 34 -2 10 39 34 -2 10 39 34 -2 10 39 34 -2 10 39 34 -2 10 30 34 -4 143 193 292 -4 10 111 110 -4 130 173 36 -5 2 202 214 30 -6 1100 133 30 37 -6 120 132 23 20 -6 120 132 214 30 -70 122 132		2 4 95 131	-8 2 95 99- -10 2 351 114 -10 2 351 114 -10 2 351 114 -11 2 66 351+ -11 2 66 351+ -11 2 66 351+ -11 2 760 233 -11 2 760 233 -11 2 760 233 -11 0 100 24+ -2 0 100 24+ -3 0 100 24+ -4 0 100 24+ -4 0 100 100+ -10 0 141 147 -10 141 147 -11 7 24 50+ -11 7 24 50+ -11 7 24 50+ 1 7	-1 7 33 -1 7 3 37 -1 7 3 37 -3 7 3 37 -3 7 3 37 -3 7 3 7 -3 7 3 7 -7 7 7 5 7 -7 7 7 5 7 -7 7 7 5 7 -7 7 7 7 5 7 -7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		111333399957779000111 ********************************	624 626 7 7 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	26304935693477794275 2 13160798500776131167767484444444444444444444444444444444
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7 8 110 2 6 7 8 120 200 120 4 2 211 223 141 131 4 2 211 223 141 131 - 2 143 214 131 141 131 - 2 4 140 111 141 131 141 131 - 2 4 140 111 141	4 103 113 -4 103 113 -4 2 113 14 -4 2 113 15 -4 2 113 15 -4 2 113 15 -4 2 113 15 -4 2 124 20 -10 2 20 20 -11 2 104 15 -12 2 104 102 -12 2 104 102 -12 2 104 102 -12 2 104 102 -12 104 105 112 -12 114 105 112 -12 114 105 112 -12 114 105 112 -12 113 104 105 -12 113 105 112 -13 105 112 </td <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>1 3 43 1 4 8 40 1 3 5 5 5 7 7 5 8 87 7 8 87 8 84 9 9 88 9 9 88 9 9 88 9 9 88 9 9 88 9 9 88 9 9 9 88 9 9 9 88 9 9 9 88 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td> <td>71 - 42+ -1 45+ -1 45+ -1 45+ -1 45+ -1 45+ -1 45+ -1 45+ -1 335+ -1 41+ -1 335+ -1 47+ -1 48+ -1</td> <td></td> <td>79 4 78 4 78 4 87 4 87 4 87 4 87 4 87 4 87</td> <td>7 10:2:8 > 110:0:8:453143543543543543543544384438</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 3 43 1 4 8 40 1 3 5 5 5 7 7 5 8 87 7 8 87 8 84 9 9 88 9 9 88 9 9 88 9 9 88 9 9 88 9 9 88 9 9 9 88 9 9 9 88 9 9 9 88 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	71 - 42+ -1 45+ -1 45+ -1 45+ -1 45+ -1 45+ -1 45+ -1 45+ -1 335+ -1 41+ -1 335+ -1 47+ -1 48+ -1		79 4 78 4 78 4 87 4 87 4 87 4 87 4 87 4 87	7 10:2:8 > 110:0:8:453143543543543543543544384438
1 0 127 100 10 0 141 137 10 0 141 137 11 0 141 137 11 0 141 137 11 11 141 144 11 127 128 12 11 141 124 126 11 147 135 2 2 2 241 136 2 4 147 136 2 4 147 137 2 4 147 137 2 4 147 137 4 2 107 131 4 2 107 137 4 2 137 134 4 103 287 137 4 103 287 137 6 133 287 137 6 133 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>-0 2 88 88 -0 2 88 70 -0 2 2 2 2 -0 2 2 2 2 -0 2 2 2 2 -0 2 102 2 2 -0 2 102 104 104 -10 2 107 136 107 -12 2 200 137 136 -14 0 92 73 144 -14 0 92 73 146 -14 0 103 73 146 -14 0 103 123 136 -14 0 103 123 136 -15 0 103 123 137 -16 0 103 137 136 -15 0 106 73 146 -15 0</td> <td>-11 0 83 37* 1 1 71 60 1 3 163 67 1 3 163 67 1 3 163 67 3 103 68 10 3 103 68 10 3 3 60 77 3 3 60 77 3 7 50 510 7 7 520 510 7 7 75 510 7 7 75 510 7 7 75 510 7 7 75 510 7 7 75 510 7 7 75 510 7 7 75 510 7 7 75 510 7 7 75 510 7 7 75 510</td> <td>-3 9 9 68 -7 9 7 99 -7 9 02 +9 9 63 +9 7 67 +0 9 76 -11 9 76 -11 9 78 -11 9 78</td> <td>100- - 01- - 02- - 03- - 17- - 17- - 17- - 17- - 17- - 17- - 18- - 19-<td>-1 3</td><td>** 158 92 91 92 91 92 93 93 94 94 94 94 94 94 94 94 95 95 95 95 95 95 95 95 95 95</td><td>337 44 337 420 337 420 337 430 430 430 430 430 430 430 430</td></td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0 2 88 88 -0 2 88 70 -0 2 2 2 2 -0 2 2 2 2 -0 2 2 2 2 -0 2 102 2 2 -0 2 102 104 104 -10 2 107 136 107 -12 2 200 137 136 -14 0 92 73 144 -14 0 92 73 146 -14 0 103 73 146 -14 0 103 123 136 -14 0 103 123 136 -15 0 103 123 137 -16 0 103 137 136 -15 0 106 73 146 -15 0	-11 0 83 37* 1 1 71 60 1 3 163 67 1 3 163 67 1 3 163 67 3 103 68 10 3 103 68 10 3 3 60 77 3 3 60 77 3 7 50 510 7 7 520 510 7 7 75 510 7 7 75 510 7 7 75 510 7 7 75 510 7 7 75 510 7 7 75 510 7 7 75 510 7 7 75 510 7 7 75 510 7 7 75 510	-3 9 9 68 -7 9 7 99 -7 9 02 +9 9 63 +9 7 67 +0 9 76 -11 9 76 -11 9 78 -11 9 78	100- - 01- - 02- - 03- - 17- - 17- - 17- - 17- - 17- - 17- - 18- - 19- <td>-1 3</td> <td>** 158 92 91 92 91 92 93 93 94 94 94 94 94 94 94 94 95 95 95 95 95 95 95 95 95 95</td> <td>337 44 337 420 337 420 337 430 430 430 430 430 430 430 430</td>	-1 3	** 158 92 91 92 91 92 93 93 94 94 94 94 94 94 94 94 95 95 95 95 95 95 95 95 95 95	337 44 337 420 337 420 337 430 430 430 430 430 430 430 430

A powder photograph can be indexed with the above unit-cell dimensions, and upon estimation of intensities of reflexions it was revealed that the most intense reflexions are accounted for by the powder lines.

(b) Diphenylbis-(2,4,7,9-tetramethyl-1,10-phenanthroline)mercury(II)

Oscillation photographs obtained from crystals of $Ph_2Hg(tmp)_2$ have diffuse lines in the same orientation as in photographs of $Ph_2Hg(dmp)_2$. The *hk*0 reciprocal lattice level is similar to that of $Ph_2Hg(dmp)_2$, having identical requirements for reflexions to be observed -hk0:h+k=2n and 0k0:k=4n, but *hk*1 and *h0l* Weissenberg photographs revealed the crystals to be twinned, with components of monoclinic symmetry having diffuse lines for odd k extending in the **a*** and **c*** directions of reciprocal space. Four crystals were examined and found to be twinned in this manner.

A very small crystal of habit different from that of the other crystals was found to have cell dimensions and intensities of reflexions similar $(\pm 0.1 \text{ Å}, \pm 20')$ to those of the twin components. The crystal was mounted about the *b* axis and since it was a very small crystal is proved too difficult to mount about another direct axis, so the *b*-axis length was determined from an oscillation photograph. The crystal has a=21.09, b=14.54, c=14.65 Å, $\beta=126^{\circ}34'$, $U=3607.8 \text{ Å}^3$, D_{meas} (twinned crystals, by flotation)= 1.52 g.cm^{-3} , $D_{calc}=$ 1.52 g.cm^{-3} for Z=4, requirements for reflexions to be observed hkl:h+k=2n, and gave an oscillation photograph symmetrical about the h0l layer line, indicating one of the *C*-centred monoclinic space groups C2, Cm, or C2/m.

All except one line (of medium intensity) of a powder photograph can be indexed with the unit cell of the single crystal. The line not indexed does not result from either free ligand or diphenylmercury.

(c) The diffuse lines

The presence of diffuse lines usually indicates microsynthetic twinning, often resulting from mistakes in crystal growth of layer structures. When twinning in this way leads to ordered regions displaced by $\frac{1}{2}b$ from each other, there is a lowering in intensity of odd kreflexions, and if the regions are small enough, diffuse streaks are observed through odd k reflexions (Dornberger-Schiff & Dunitz, 1965). Diffuse lines may be caused by the mode of disorder found in the ureahydrocarbon (Smith, 1952) and urea-di-n-alkylmercury inclusion compounds (Bähr & Meier, 1958). In crystals of these compounds, the urea molecules form an ordered structure with channels of appropriate diameter for the inclusion of n-alkanes or di-n-alkylmercurials. One-dimensional disorder giving rise to diffuse lines occurs when the n-alkanes are randomly distributed along the channels. If discrete spots occur in the diffuse lines, then the hydrocarbon chains are partially ordered in their positions in the channels.

Diffuse lines may also arise from thermal diffuse scattering, particularly for structures involving large planar molecules. Thermal diffuse scattering resulting from vibrations of molecules is expected to be temperature dependent (see *e.g.* Wooster, 1962). With a crystal of Ph₂Hg(dmp)₂ mounted about the needle axis an oscillation photograph obtained at a temperature below -115°C had diffuse lines of the same intensity relative to sharp reflexions, as diffuse lines in a photograph obtained at *ca.* 20°C. In addition, the Patterson syntheses for each adduct indicate that the planar aromatic ligands are in *ac* planes and the diffuse lines are observed to lie parallel to these planes in reciprocal space (k = 1, 3, 5, 7, ...) instead of normal to them as expected for thermal diffuse scattering.

Since the low temperature study of $Ph_2Hg(dmp)_2$ shows that the diffuse lines probably result from dis-

Fig. 2. Patterson syntheses for Ph₂Hg(tmp)₂. The contours are evenly spaced on an arbitrary scale. Negative regions are bounded by broken lines. (a) The plane y=0. A skeleton of the ligand is placed to coincide with vectors near the origin. The asymmetric section is bounded by $x=0 \rightarrow \frac{1}{2}$, $z=0 \rightarrow \frac{1}{2}$. (b) The plane $y=\frac{1}{4}$. Mercury-ligand atom vectors are shown for mercury and ligand atoms separated by $x, \frac{1}{4}, z$, together with the large mercury-mercury vector at 0.33, $\frac{1}{4}$, 0.36.

order, structure solution for both adducts was initially sought with all atoms fully occupied until packing requirements indicated the presence of partial occupancy. The observed data represents the sum of diffraction from all ordered regions of the crystal, and the structure solution obtained by this procedure will be referred to as the superposition structure. The possible structures of ordered regions have been estimated from the superposition structure.

Structure solutions

(1) Solution of the superposition structure for Ph₂Hg(tmp)₂

From the very small monoclinic crystal of dimensions $0.05 \times 0.05 \times 0.025$ mm (absorption coefficient μ (Cu $K\alpha$) = 8.47 mm⁻¹, t_{opt} = 0.236 mm) mentioned earlier, 414 independent non-zero reflexions were recorded photographically for reciprocal lattice levels h0l-h,10,l with an Enraf-Nonius equi-inclination Weissenberg camera. Reflexions of odd k index are so weak that only 36 reflexions of this type were observed, and no odd k reflexions were observed for k > 3. Reflexion intensities were measured visually by comparison with a standard strip of twenty spots.

After Lorentz and polarization corrections had been applied, a Patterson synthesis was calculated. Vector peaks were found to be predominantly in the (040)

Fig. 3. Atom numbering scheme for $Ph_2Hg(tmp)_2$. Adjacent ligand and Ph_2Hg moieties in the plane $y=\frac{1}{4}$ are shown. Adjacent ligand and Ph_2Hg moieties in (020) have an atom numbering scheme related by a twofold axis about the C-Hg-C unit.

A C 28B - 15*

planes with very few vectors between these planes. The (010) plane has mercury-ligand vectors grouped near the origin [Fig. 2(a)]. The positions of these vectors reveal that the ligands are oriented with N(1)-N(10) parallel to the [001] direction and lie in ac planes (the atom numbering scheme for 2,4,7,9-tetramethyl-1,10-phenanthroline is given in Fig. 3). The only other vector in (010) is a peak at $\frac{1}{2}$, 0, 0 almost as large as the origin, suggesting that it is not only a mercury-mercury vector or vectors, but also a sum of smaller vectors between light atoms separated by $\frac{1}{2}a$. The $y = \frac{1}{4}$ plane has one large peak at 0.33, $\frac{1}{4}$, 0.36 [Fig. 2(b)]. Both C2 and C2/m space groups require a Harker plane $(2x_i, 0, 2z)$ in the Patterson synthesis. Since the peak $0.33, \frac{1}{4}, 0.36$ is almost certainly a mercury-mercury vector, a large vector in (010) is expected in addition to the peak at $\frac{1}{2}$, 0, 0 for C2 or C2/m space groups.

The space group was assumed to be Cm and a mercury atom was placed at $\frac{1}{4}, \frac{1}{4}, 0$ satisfying the Patterson peak at $\frac{1}{2}$, 0, 0 and consistent with space groups Cm, C2, and C2/m. The residual index R = $\sum ||F_o| - |F_c|| / \sum |F_o|$ was 0.33 and a difference Fourier synthesis had four large peaks at 0.08, 0, 0.36; $\frac{1}{2}$ + 0.08, $0, 0.36; \frac{1}{2} - 0.08, 0, 1 - 0.36$ and 1 - 0.08, 0, 1 - 0.36. Vectors from $\frac{1}{4}, \frac{1}{4}, 0$ to each of these positions satisfy the vector at 0.33, $\frac{1}{4}$, 0.36 but vectors between all of these positions are not present. The coordinates 0.08, 0, 0.36 were chosen for a mercury atom position, R was reduced to 0.24, and a subsequent difference Fourier synthesis revealed positions of ligand (Fig. 4) and phenyl group atoms. The phenyl groups lie immediately above and below each mercury atom, and the C-Hg-C skeleton is linear and in the [010] direction.

No improvement in phasing of light atom positions occurred on adding ligand atoms singly to the structure factor calculation. Consequently, coordinates of ligand and phenyl group atoms were chosen to coincide with peaks in difference Fourier syntheses as closely as possible, maintaining C–C and C–N bond lengths within the range 1.29-1.52 Å, Hg–C bond lengths of 2.0-2.15 Å, and planar phenyl rings.

The difference syntheses of Fig. 4 indicate eight ligands per unit cell as required from the density of the crystals. Ligands were added singly to the structure factor calculation. When the ligand in (010) with x coordinates $<\frac{1}{2}$ is added peaks corresponding to the ligand with $x > \frac{1}{2}$ disappear from the synthesis as well as those of the ligand added. However, when both of these ligands are added the subsequent difference synthesis is devoid of negative regions, confirming the presence of both ligands.

At this stage six mercury atoms had been placed in the unit cell (fourfold position $\frac{1}{4}, \frac{1}{4}, 0$; twofold 0.08, 0, 0.36) whereas the measured density of the crystals suggests four. Phenyl group positions indicated in difference Fourier syntheses were confirmed by the Patterson synthesis. Mercury-phenyl-group atom vectors are present immediately below the origin of the synthesis. Vectors between mercury atoms and phenyl group atoms attached to mercury atoms in adjacent (040) planes are also present, being situated immediately above and below the mercury-mercury vector $0.33, \frac{1}{4}, 0.36$. All peaks in the Patterson synthesis are now accounted for, and all calculated Hg-light-atom vectors are present. However, phenyl groups of mercury atoms at $x, \frac{1}{4}, z$ overlap with phenyl groups of mercury atoms at $x, \frac{3}{4}, z$.

The coincidence of phenyl groups is so close that atoms of separate groups cannot be distinguished in difference syntheses. A mirror plane in (020) is required for *Cm* symmetry, but whenever a Ph₂Hg moiety is placed at $x, \frac{1}{4}, z$ (e.g. $\frac{1}{4}, \frac{1}{4}, 0$) a Ph₂Hg moiety cannot be present at $x, \frac{3}{4}, z$ (e.g. $\frac{1}{4}, \frac{3}{4}, 0$) as required for space group *Cm*. With the fourfold Ph₂Hg moieties half-occupancy to maintain a mirror plane in the superposition structure in (020) and prevent overlap of phenyl groups, and with the Ph₂Hg moiety in (010) fully occupied, there are four formula units of Ph₂Hg(tmp)₂ in the unit cell as required.

The residual index R was 0.19 for the sharp reflexions and 0.57 for the diffuse reflexions. A small peak was present in a subsequent difference synthesis at $\frac{1}{2} + 0.08$, 0, 0.36 suggesting the presence of a mercury atom in position for coordination of the ligand in (010) with x coordinates $> \frac{1}{2}$ [Fig. 4(a)]. Placing a Ph₂Hg moiety at this position requires partial occupancy, since overlap of phenyl groups occurs with Ph₂Hg moieties having mercury atoms in the $y = \frac{1}{2}$ plane. A mercury atom was placed at $\frac{1}{2}$ + 0.08, 0, 0.36 and the occupancies of Ph_2Hg moieties in the (020) planes varied such that with an occupancy of m for one Ph₂Hg moiety in (010) the occupancy of the other is 1-m, since it is translated to a position $\frac{1}{2}b$ removed from the Ph₂Hg moiety of occupancy m ($\frac{1}{2}, \frac{1}{2}, 0$ operation). Several models were tried, best agreement being obtained for m = 0.8. The calculated structure factors for diffuse reflexions are more sensitive than the sharp reflexions to occupancy variations since only the Ph₂Hg moieties with mercury atoms in (020) contribute to these re-

Fig.4. Difference Fourier syntheses for $Ph_2Hg(tmp)_2$ with mercury atoms at $\frac{1}{4}, \frac{1}{4}, 0$ and 0.08, 0, 0.36 as the phasing atoms. (a) The plane y=0. (b) The plane $y=\frac{1}{4}$.

flexions, the remainder of the cell contents conforming to a subcell of dimensions $a, \frac{1}{2}b, c$.

With occupancies of 0.8 and 0.2 for the Ph₂Hg

moieties in (020) R was 0.17 for both the 378 sharp and 36 diffuse reflexions and 0.25 for all reflexions, including 424 unobserved reflexions. A structure factor

list is given in Table 1. A final difference Fourier synthesis calculated using observed reflexions has no peaks $>\frac{1}{2}$ or $<-\frac{1}{2}$ of a carbon atom, and difference syntheses calculated with mercury atoms only given the occupancy values of the final model are virtually identical with those shown in Fig. 4, which were calculated with an incomplete mercury atom contribution to the structure factor expression. Tables 2, 3 and 4 show the atomic coordinates, bond lengths and bond angles in Ph₂Hg(tmp)₂.

Refinement was not attempted with 81 atoms in the asymmetric unit and only 414 observed reflexions.

Table 2. Coordinates of atoms of Ph₂Hg(tmp)₂ within the asymmetric unit of space group Cm

				Occu-
	x/a	у/b	z/c	pancy
Hg(1)	0.2500	0.2500	0	0.5
Hg(2)	0.0839	0	0.3584	0.8
Hg(3)	0.5839	0	0.3584	0.2
Ligand co	ordinated to H	g(1)		
N(1)	0.1062	0.2500	-0.0250	1.0
N(10)	0.1000	0.2500	-0.2240	1.0
C(2)	0.1125	0.2500	0.0692	1.0
C(3)	0.0387	0.2500	0.0615	1.0
C(4)	-0.0362	0.2500	-0.0481	1.0
C(5)	-0.1062	0.2500	-0.2531	1.0
C(6)	-0.1094	0.2500	-0.3565	1.0
C(7)	-0.0425	0.2200	-0.4481	1.0
C(8)	0.0250	0.2200	-0.4327	1.0
C(9)	0.0975	0.2500	-0.3250	1.0
C(11)	0.0312	0.2200	-0.2346	1.0
C(12)	0.0325	0.2200	-0.1346	1.0
C(13)	-0.0375	0.2200	-0.1461	1.0
C(14)	-0.0400	0.2200	-0.3442	1.0
C(15)	0.1937	0.2200	0.1808	1.0
C(16)	-0.1125	0.2200	-0.0673	1.0
C(17)	-0.1244	0.2200	-0.5596	1.0
C(18)	0-1775	0.2200	-0·2961	1.0
Ligand co	ordinated to H	g(2)		
N(1)	0.2325	0	0.3904	1.0
N(10)	0.2375	Ō	0.5865	1.0
C(2)	0.2200	Ō	0.2885	1.0
C(3)	0.2850	Ō	0.2885	1.0
C(4)	0.3550	Ō	0.3904	1.0
C(5)	0.4412	Ó	0.6106	1.0
C(6)	0.4387	Ō	0.7048	1.0
C(7)	0.3812	0	0.8000	1.0
C(8)	0.3112	0	0.7961	1.0
C(9)	0.2437	0	0.6827	1.0
C(11)	0.3025	0	0.5961	1.0
C(12)	0.3000	0	0.4961	1.0
C(13)	0.3662	0	0.4923	1.0
C(14)	0.3750	0	0.7038	1.0
C(15)	0.1425	0	0.1846	1.0
C(16)	0.4312	0	0.4038	1.0
C(17)	0.4525	0	0.9231	1.0
C(18)	0.1700	0	0.6769	1.0

Atoms of ligand coordinated to Hg(3) have coordinates of atoms of ligand coordinated to $Hg(2) + \frac{1}{2}, 0, 0$ and occupancy 1.0.

C(19)	0.2500	0.3946	0.0000	0.5
C(20).	0.3228	0.4482	0.0625	0.5
C(21)	0.3228	0.5445	0.0625	0.5
C(22)	0.2500	0.5870	0.0000	0.5

Table 2 (cont.)

				Occu-
	x/a	y/b	z/b	pancy
C(23)	0.1815	0.5445	-0.0481	0.5
C(24)	0.1815	0.4482	-0.0481	0.5
C(25)	0.2200	0.1054	0.0000	0.2
C(26)	0.1815	0.0218	-0.0481	0.2
C(27)	0.1815	-0.0445	-0.0481	0.2
C(28)	0.2200	-0.0870	0.0000	0.5
C(29)	0.3228	-0.0445	0.0625	0.2
C(30)	0.3228	0.0518	0.0625	0.5
Phenyl grou	ups bonded t	o Hg(2)		
C(19)	0.0856	0.1462	0.3650	0.8
C(20)	0.0125	0.1979	0.3125	0.8
C(21)	0.0125	0.2911	0.3125	0.8
C(22)	0.0856	0.3446	0.3650	0.8
C(23)	0.1519	0.2911	0.4154	0.8
C(24)	0.1519	0.1979	0.4154	0.8

Atoms of phenyl groups bonded to Hg(3) have coordinates of atoms of phenyl groups bonded to Hg(1) $+\frac{1}{2}$, 0, 0 and occupancy 0.2.

Table 3. Bond lengths in Ph₂Hg(tmp)₂

(a) Mercury stereochemistry

(a) Mercury Stereochen	iisti y	
	Hg(1)	Hg(2)
Hg-N(1)	2.83 Å	2.88 &
Hg - N(10)	2.90	2.96
Hg-C(19)	2.10	2.13
Hg-C(25)	2.10	- 12
(0) Ligands	× •	
	Liga	nd
		ited to:
	ng(1)	Hg(2)
N(1) - C(2)	1.31 A	1.35 A
N(1) - C(12)	1.42	1.34
C(2) = C(3)	1.49	1-37
C(3) = -C(4)	1.43	1.34
C(4) - C(13)	1.42	1.37
C(5) = C(12)	1.48	1.41
C(5) = C(13)	1.30	1.50
C(0) = -C(14)	1.30	1.34
C(7) = C(14)	1.40	1.44
C(8) - C(9)	1.49	1.40
C(9) = N(10)	1.45	1.24
N(10) - C(11)	1.36	1.34
C(11) - C(12)	1.45	1.43
C(11) - C(14)	1.40	1.40
C(12) - C(13)	1.38	1.43
C(2) - C(15)	1.51	1.42
C(4) - C(16)	1.46	1.50
C(7) - C(17)	1.51	1.51
C(9) - C(18)	1.48	1.51
(c) Phenyl groups	~	-
	For	For
	Hg(1)	Hg(2)
C(19)–C(20)	1.46	1.46
C(19) - C(24)	1.41	1.36
C(20) - C(21)	1.40	1.36
C(21) - C(22)	1.38	1.47
C(22) - C(23)	1.32	1.37
C(23) - C(24)	1.40	1.36
C(25) - C(20)	1.41	
C(25) - C(30)	1.40	
C(20) - C(27)	1.40	
C(28) = C(20)	1.32	
C(20) - C(29)	1.30	
U(27) - U(30)	1.40	

Table 4. Bond angles in Ph₂Hg(tmp)₂

(a) Mercury stereochemistry		
(a) mereary serverences	Hg(1)	Hg(2)
N(1)—Hg- $N(10)$	59°	57°
C(19) - Hg - C(25)	180	
N(1), $N(10)$ -Hg-C(19), C(25)	90	90
(b) Ligands		

Ligand

	coordina	ted to:
	Hg(1)	Hg(2)
Hg N(1) - C(2)	115°	110°
Hg - N(1) - C(12)	121	120
C(2) - N(1) - C(12)	123	130
N(1) - C(2) - C(3)	119	118
N(1) - C(2) - C(15)	119	122
C(3) - C(2) - C(15)	123	121
C(2) - C(3) - C(4)	119	116
C(3) - C(4) - C(13)	118	125
C(3) - C(4) - C(16)	125	122
C(13)-C(4)-C(16)	117	112
C(6) = C(5) = C(13)	123	120
C(3) = C(6) = C(14)	110	120
C(8) = C(7) = C(14)	128	108
C(14) = C(7) = C(17)	115	131
C(14) - C(1) - C(11)	123	110
N(10) = C(8) = -C(8)	120	130
N(10) - C(9) - C(18)	112	120
C(8) - C(9) - C(18)	128	111
Hg - N(10) - C(9)	120	123
Hg - N(10) - C(11)	120	120
C(9) - C(10) - C(11)	120	117
N(10)-C(11)-C(12)	120	120
N(10)-C(11)-C(14)	118	120
C(12)-C(11)-C(14)	121	120
N(1) - C(12) - C(11)	119	123
N(1) - C(12) - C(13)	120	110
C(11) - C(12) - C(13)	120	127
C(4) = C(13) = C(5)	122	120
C(4) - C(13) - C(12)	118	110
C(5) = C(15) = C(12)	119	122
C(6) = C(14) = C(11)	119	115
C(7) - C(14) - C(11)	121	123
(c) Phenyl groups	$\mathbf{U}_{\mathbf{r}}(1)$	$\mathbf{U}_{\alpha}(2)$
	пg(1)	ng(2)
HgC(19)C(20)	122	120*
Hg = -C(19) = C(24)	124	124
C(20) - C(19) - C(24)	114	121
C(19) = C(20) = C(21) C(20) = C(21) = C(22)	117	121
C(21) = C(21) = C(22) C(21) = C(22) = C(23)	125	113
C(22) - C(23) - C(24)	118	125
C(19) - C(24) - C(23)	124	124
Hg - C(25) - C(26)	124	
Hg - C(25) - C(30)	122	
C(26) - C(25) - C(30)	114	
C(25)-C(26)-C(27)	124	
C(26)-C(27)-C(28)	118	
C(27) - C(28) - C(29)	114	
C(28) - C(29) - C(30)	122	
C(25)-C(30)-C(29)	117	

(2) Solution of the superposition structure for Ph₂Hg(dmp)₂

A crystal of dimensions $0.05 \times 0.08 \times 0.2$ mm, less than optimum size (absorption coefficient μ (Cu K α) = 9.53 mm⁻¹, $t_{opt} = 0.21$ mm) was chosen and mounted about the needle axis; a total of 1868 independent

non-zero reflexions (including 537 diffuse reflexions) were collected for reciprocal lattice levels hk0-hk12. Since only very small variations from monoclinic symmetry could be seen in intensities of reflexions, structure solution was sought with a monoclinic data set in space group P1 until the appropriate monoclinic space group became apparent. All calculations were carried out in P1 except for the final occupancy determination and structure factor list.

A three-dimensional Patterson synthesis calculated in $P\overline{1}$ has P2/m symmetry and only vectors within the asymmetric unit of P2/m are discussed. The synthesis has a large number of peaks in (040) and a small number of peaks between these planes, as observed for Ph₂Hg(tmp)₂. Very large peaks are present in the ynthesis at $\frac{1}{2}, 0, \frac{3}{8}; \frac{1}{2}, 0, \frac{5}{8}; 0.21, \frac{1}{4}, \frac{1}{2}; 0.29, \frac{1}{4}, \frac{1}{8};$ and $0.29, \frac{1}{4}, \frac{7}{8}$. With b and c axis lengths almost identical with that of Ph₂Hg(tmp)₂, and vectors almost entirely in (040), similarities between mercury-mercury vectors in Patterson syntheses were sought. Coincidence of band c axes in Patterson syntheses brings one large vector at $\frac{1}{2}$, 0, $\frac{5}{8}$ almost into coincidence with the $\frac{1}{2}$, 0, 0 vector in the Patterson synthesis of Ph₂Hg(tmp)₂, and there are many smaller vectors near the origin at about the correct distance from it for mercury-ligand vectors.

Using this orientation of the Patterson syntheses, and hence unit cells, an initial mercury atom position was chosen to satisfy the Patterson synthesis and coincide as closely as possible with the initial mercury position used for $Ph_2Hg(tmp)_2$.

With Hg(1) at $\frac{1}{4}, \frac{3}{4}, \frac{3}{4}$ R was 0.53 and a difference synthesis had strong peaks at $0.04, 0, \frac{1}{4}$ (A); $\frac{1}{2} - 0.04, 0, \frac{1}{4}$ $(B); \frac{1}{2} + 0.04, 0, \frac{5}{8}(C); \frac{1}{2} + 0.04, 0, \frac{7}{8}(D); \frac{3}{4}, \frac{1}{4}, \frac{1}{8}(E)$ and $\frac{3}{4}, \frac{1}{4}, \frac{3}{8}$ (F). The $y = \frac{1}{2}$ and $\frac{3}{4}$ planes are identical to the y=0 and $\frac{1}{4}$ planes respectively, except for a peak at $\frac{1}{4}, \frac{3}{4}, \frac{3}{4}$ corresponding to Hg(1) translated $\frac{1}{2}b$. Vectors from $\frac{1}{4}, \frac{1}{4}, \frac{3}{4}$ to E and F satisfy the Patterson synthesis peaks $\frac{1}{2}$, $0, \frac{3}{8}$ and $\frac{1}{2}, 0, \frac{5}{8}$ respectively. Position E [Hg(2)] was added (R=0.50) and peak F, together with the peak of the same x and z coordinates in the $y=\frac{3}{4}$ plane, was absent from a subsequent difference synthesis. Peaks at $\frac{1}{4}$, $\frac{3}{4}$, $\frac{3}{4}$ and $\frac{3}{4}$, $\frac{3}{4}$, $\frac{1}{8}$ became more intense, and mercury atoms were added with these coordinates together with $0.04, 0, \frac{1}{4}$ [Hg(3)]. A structure factor calculation had R=0.32 and a difference synthesis had only one strong peak at $\frac{1}{2} + 0.04, \frac{1}{2}, \frac{5}{8}$. This position [Hg(4)] was added to the structure factor calculation (R=0.26), and subsequent difference Fourier syntheses are shown in Fig. 5. The $y = \frac{1}{4}$ and $\frac{3}{4}$ planes are identical, as also are the y=0 and $\frac{1}{2}$ planes but with a small peak in the y=0 plane having the same x and z coordinates as the mercury position in the $y = \frac{1}{2}$ plane [Hg(4)], and a small peak in $y=\frac{1}{2}$ corresponding to the mercury position in y=0 [Hg(3)].

As for $Ph_2Hg(tmp)_2$ the planar ligands lie in (040). The ligands were added singly to the structure factor calculation and all ligands were found to be present, difference syntheses having only very small

Table 5. Comparison of F_o and F_c for Ph₂Hg(dmp)₂

Sharp reflexions are presented first. Unobserved reflexions are indicated with an asterisk.

FO FC H K FO FC H FO
-13 6 -14 0 -14 0 -14 0 -14 0 -14 0 -14 0 -14 0 -14 0 -14 0 -15 0 -15 0 -15 0 -15 0 -15 0 -15 0 -15 0 -15 0 -16 0 -17 0
-13 -14 -14 -14 -14 -15 -15 -15 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16
609 178 199 234 1241 241 163 64 479 339 143 130
0 665 2491 2491 237 1464 326 325 325 997 110 10 10 10 10 10 10 10 10 1
24480242468024680241111
1
5 C 8 + 8 5 2 8 7 1 0 5 + 1 8 5 2 8 7 1 0 5 + 2 8 7 2 9 5 2 9 5 2 9 5 2 9 5 4 4 0 + 5 4 + 5 4 + 5 4 - 5
F0 54 225 217 536 175 175 175 175 175 175 175 175 175 53 55 55 48
K 11274680246246246774
H 100111 111112223334 144566
FC 345 110 229 8* 142 8* 142 8* 142 8* 142 8* 142 8* 142 8* 142 8* 142 8* 142 107 500 110 8* 110 110 110 110 110 110 110 11
F0 298 90 1715 140 317 44 128 710 446 830 55 1637 1637 1637 1637 1637
x 1020246802468024
H - 3 3 4 4 4 4 5 5 5 5 5 5 5 6 6 6
FC 12+ 10+ 28+ 319 367 192 267 192 23+ 9+ 15+ 27 169 26+ 214+ 170
F0 4357 254 2559 1559 499 1555 2559 1235 2559 1235 2754 6
x 24024680246024680
H -9 -10 -10 -10 -11 -11 -11 -11 -11 -11 -11
0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 33 518 470 54 286 34 41 286 34 41 223 101 236 76
K L 2080246408022468

Table 5 (cont.)

H K 8 8 9 2 9 4	F0 FC 137 171 116 142 46 634	H K FD FC 10 6 49 43• 11 8 45 93• 11 4 73 53	н к F0 FC 11 4 41 28- 11 6 39 16- 12 2 41 8-	н к F0 FC -1 8 115 136 -1 10 55 102 -1 12 87 83	H K FÖ PO 44444 L N Ø 33555	H K -9 1 -9 3 -9 7	F0 94 3 80 5
10 2 10 10	66 138 67 39+ 67 19+ 47 54+ 109 70	12 2 44 66+ 12 4 43 36+ 12 6 66 98 13 2 77 92 13 4 40 48-	14 4 101 161 12 4 101 161 12 5 35 7, 12 8 96 112 13 2 38 7, 13 4 7, 57	-1 12 87 92 -2 0 48 2 -2 2 36 43 -2 4 32 6+ -2 6 37 48+	0 3 22 C+ 0 5 30 D+ 0 7 37 0+ 0 9 44 0+ 0 11 91 4-	•10 1 •10 3 •10 5 •10 7	44 47 90 93
11 4 11 6 12 2 12 4 13 2	77 69 75 106 47 10= 45 114 45 66=	13 6 67 115 -1 g 273 299 -1 2 165 112 -1 6 197 183 -1 6 197 162	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3 2 142 171 -3 4 28 50 -3 6 170 190 +3 6 73 44 -5 10 20 100	0 13 59 0+ 0 15 51 0+ 1 3 143 187 1 5 188 187 1 7 136 187	•10 11 •11 1 •11 3 •11 9 •11 7	93 49 91 52
13 4 13 6 -1 0 -1 2 -1 4	102 128 75 94 255 257 268 241 187 140	-1 10 158 121 -1 10 105 109 -1 12 65 82 -1 16 62 73 -2 0 160 87	-1 4 31 12+ -1 6 53 65 -2 0 346 378 -2 80 76 -2 4 230 244	+4 0 106 140 -4 2 157 127 +4 4 54 122 +4 6 57 99 +5 0 313 346	1 0 141 104 1 11 72 01 1 13 99 63 2 1 18 17= 2 3 24 0	•12 1 •12 3 •12 5 •12 7 •12 4	52 53 54 55 53
-1 -1 -1 -1 -1 -1 -1	329 299 313 89 173 197 75 61 90 130	-2 2 152 147 -2 6 102 59 -2 6 213 180 -2 8 44 40 -2 10 101 115	-2 6 54 80 -2 8 164 179 -2 10 43 50 -2 12 110 122 -3 9 81 51	+5 2 34 350 -5 4 244 203 +5 6 30 280 -5 8 231 280 -5 10 37 120	2 5 31 1* 2 7 38 8* 2 9 45 9* 2 11 52 3* 2 13 55 1*	•13 1 •13 3 •13 9 •14 1 •14 3	74 94 33 39
•2 2 •2 4 •2 6	200 270 133 28 214 179 39 33 114 127	-2 12 42 27 -2 16 86 83 -3 0 127 92 -3 2 207 198 -3 4 62 51	-3 2 28 66 -3 4 34 25 -3 5 49 -4 0 42 55 -4 2 334 320	-5 12 126 201 -6 0 36 250 -6 2 36 240 -6 4 38 224 -6 6 40 230	3 1 162 177 3 3 104 170 3 5 149 181 3 7 143 130 3 9 119 116	•14 7 •14 7 •15 1 •15 3 •15 3	54 52 53 52
-3 2 -3 4 -3 8	54 46 301 282 56 69 226 233 47 14	-3 1 44 42* -3 10 62 115 -3 12 42 29* -3 14 59 92	-4 6 304 282 -4 8 60 52 -4 10 128 160 -4 12 36 37+	-7 0 38 324 -7 2 140 179 -7 4 39 264 -7 6 147 127 -8 0 39 94	3 11 73 80 4 1 29 16 4 3 29 80 4 9 34 10 4 7 40 60	•16 3 •16 3 •16 9 •17 1 •17 3	50 48 47 46
-3 12 -4 0 -4 2 -4 4	143 197 29 66+ 120 77 36 52+ 108 76	-4 2 31 39 -4 4 93 90 -4 4 41 47 -4 8 100 98	-5 0 161 139 -5 2 110 76 -9 4 120 125 -5 8 75 67	-8 4 40 50 -8 6 40 50 -9 0 164 172 -9 2 40 59	4 11 53 4+ 9 1 145 170 9 3 154 143 5 9 149 136	44444 L	- 76 • • • • •
•4 8 •5 0 •5 2 •5 4	83 64 33 5+ 294 276 38 7+ 234 222	-5 2 35 13+ -5 4 221 205 -9 4 42 13+ -5 6 202 225	-6 0 59 49 -6 2 193 239 -5 4 56 36 -6 6 134 183	-9 8 145 131 -9 8 145 137 -10 0 40 45 -10 2 40 23+	6 1 32 4 6 3 35 2 6 3 30 0 6 7 44 1 6 7 44 1 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4	0 3 0 5 8 7	142 134 118
•5 8 •5 10 •5 12 •5 14	45 8+ 102 94 44 5+ 76 94	-5 12 126 157 -6 0 141 96 -6 2 217 176 -6 4 104 76	-7 0 30 80 -7 2 40 36 -7 4 41 60 -7 6 43 29	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 11 94 1+ 6 13 54 0+ 7 1 130 143 7 3 110 140		73 42 68 45
•6 • •	52 68 40 83+ 44 43- 373 354 40 28+	-6 0 74 92 -6 10 72 65 -7 0 125 102 -7 2 266 305	-8 2 120 131 -8 4 174 160 -8 6 93 101 -8 8 161 183	-11 6 70 110 -11 8 53 73 -12 0 37 11 -17 2 36 98 -12 4 36 79	7 7 85 184 7 9 115 96 8 1 30 5+ 8 3 41 2+	1 13 2 1 2 3 2 5	95 150 169 121
•7 •7 •7 •7 •7 •7	292 301 46 24- 287 312 46 10- 181 215	-7 6 216 229 -8 0 42 529 -8 2 209 188 -8 4 46 555	-6 12 100 130 -9 0 42 174 -9 2 43 31+ -9 4 43 14+	-12 6 31 220 -13 0 33 804 -13 2 60 85 -13 4 30 410 -13 6 57 110	8 7 4P 2+ 8 9 53 2+ 8 11 55 2+ 8 13 51 8+	2 P 3 1 3 3 3 9	82 76 59
- 4 0 - 8 2 - 8 4 - 8 6	278 257 557 189 200 219 121 113 137 198	-9 0 160 138 -9 2 102 123 -9 4 101 99 -9 6 111 115	-10 0 61 81 -10 2 147 180 -10 4 43 55 -10 6 141 186		• 1 • 1 120 • 3 113 118 • 5 • 47 1010 • 7 • 3 89 10 1 • 6 70	3 P 3 11 4 1 4 3	46 52 179 119
-6 10 -8 12 -9 0 -9 2	45 62 85 137 45 43 116 104 44 24	-10 0 52 160 -10 2 45 69 -10 4 74 118 -10 6 53 82 -10 6 53 82	-10 8 38 57 -10 10 89 111 -11 0 43 37 -11 2 42 27 -11 4 41 24 -11 4 30 34		10 3 47 30 10 9 90 00 10 7 53 30 10 9 95 40 10 11 53 30	4 5 4 7 4 9 5 1 5 3	87 94 85 55
-10 0 -10 2 -10 4 -10 6	86 98 45 24+ 47 61+ 47 24= 47 78+	-10 10 76 97 -11 0 74 131 -11 2 64 98 -11 4 63 46 -11 6 61 120	-12 0 176 236 -12 2 41 3 -12 4 113 138 -12 5 36 0 -12 8 68 110		11 3 71 99 11 5 52 84 12 1 92 30 12 3 53 10 12 5 94 6a	5 1 5 1 5 1 5 1	42 44 53 54
-11 0 -11 2 -11 4 -11 6 -17 0	150 142 109 141 77 83 103 149 105 148	-12 0 45 13 -12 2 44 72 -12 4 43 P -12 8 81 94 -13 0 98 128	-13 0 38 45+ -13 2 38 7+ -13 4 36 35+ -13 6 32 15+ +14 0 35 51+		12 7 55 1s 12 9 53 3s 13 1 54 80s 13 3 54 74s 13 5 55 47s	6 3 6 7 6 7 7 1	127 87 114 91 35
-13 0	118 165 = 10 >>>>>	-13 2 94 169 -13 4 40 85+ -13 6 85 134 -14 0 64 107 -15 0 80 138	-14 2 96 71 -14 4 31 37 -14 6 82 106		14 1 99 10 14 3 35 00 14 9 94 00 14 7 92 00 19 1 94 630	7 J 7 J 7 J 7 J 7 J	38 42 40 91 54
0 2 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	21 10* 257 237 38 10* 168 157	<	0 2 22 12+ 0 4 31 18+		17 3 73 99 17 7 72 92 16 1 51 2 16 3 50 1 16 5 48 Cu	8 1 8 3 8 5 8 7 9 1	100 74 99 49 42
0 12 1 2 1 4 1 6	78 103 110 114 189 182 197 161	0 2 252 103 0 4 31 2+ 0 4 305 274 0 8 42 1+ 0 10 156 188	1 2 95 117 1 4 184 202 1 6 117 155 1 8 156 142 1 10 64 106		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	93 95 97 99 101	44 47 31 36 64
1 10 1 12 1 14 2 2	60 85 55 71 159 155	0 14 97 126 1 2 23 494 1 4 31 124 1 6 38 604	2 2 25 33+ 2 4 32 30+ 2 6 37 41+ 3 2 1+3 154		+2 1 18 170 +2 3 24 80 -2 9 31 10 -2 7 38 60 +2 9 45 90	10 5 11 1 11 3 12 1	50 49 50 52
2 6 2 8 2 10 2 12	210 179 44 46+ 83 108 42 29+	2 4 210 79 2 4 210 211 2 8 54 62 2 8 164 162 2 10 43 48*	3 4 9/ 92 3 6 163 163 3 6 60 79 3 10 86 81 4 2 141 178		-2 11 52 30 -2 13 55 10 -3 1 179 197 -3 3 152 170 -3 5 100 181	12 J 12 9 12 7 13 1 13 3	53 54 55 54 54
3 2 3 4 3 6 3 8	200 196 48 50 192 201 44 40-	2 12 V8 112 3 2 40 57 3 4 34 24 3 6 55 49 4 2 334 355	4 6 63 145 5 2 34 47 5 4 249 277 5 6 39 42		-3 9 119 116 -4 1 25 16 -4 3 20 8 -6 5 34 1	13 9 13 7 14 1 14 3 14 5	55 55 55
3 12 3 14 4 2 4 4	62 107 42 28+ 64 87 31 71+ 93 105	4 6 290 302 4 6 290 302 4 6 60 95 4 10 163 172 5 2 100 124	7 8 231 266 5 10 37 36* 5 12 126 199 6 2 36 61* 6 4 36 17*		-4 7 40 40 -4 9 47 64 -4 11 53 46 -4 13 54 10 -4 15 49 00	19 1 19 3 19 9 16 1 16 3	54 53 52 51 90
* *	115 120 35 5+ 216 170 42 4+	5 4 120 70 5 6 75 96 5 8 78 56 6 2 181 150 6 4 40 54+	8 6 40 33+ 7 2 140 208 7 4 39 18+ 7 6 127 157 8 2 40 29+		-5 1 150 170 -5 3 104 163 -5 5 115 136 -5 7 109 117 -5 9 88 108	16 9 17 1 17 3 •1 3 •1 5	48 47 43 99 93
5 10 5 12 6 2	202 199 45 8 115 140 204 201 93 27	6 8 154 111 6 8 70 99 7 2 40 37+ 7 6 41 71+ 7 6 43 32+	8 4 40 13+ 8 6 40 25+ 9 2 40 38+ 9 4 103 141 9 6 39 44+		-6 1 32 4. -6 3 35 2. -6 5 30 De -6 7 44 1. -6 9 50 7.	•1 7 •1 9 •1 11 •1 13 •2 1	37 43 91 93
6 6 7 4 6	159 149 74 64 290 306 77 102 200 235	8 2 131 129 8 4 165 183 8 6 70 99 8 8 142 189 8 10 37 47*	9 8 91 137 10 2 40 10• 10 4 39 30• 10 6 37 10• 11 2 69 94		-6 11 54 10 -6 13 54 00 -6 15 46 00 -7 1 112 163 -7 3 110 144	2 5	127 130 78 82
8 2 8 4 9 2 9 4	190 193 44 74 135 161 99 136 101 139	8 12 87 133 9 2 43 7. 9 4 43 34. 9 8 42 8. 10 2 147 175	11 4 61 88 11 6 69 119 12 2 36 5+ 12 4 34 2+ 12 5 31 10+		-7 9 93 110 -7 7 85 104 -7 0 94 98 -6 1 39 59 -6 3 41 7-	-3 5 -3 7 -3 9	69 32 39 46
9 5 9 10 10 2 10 4	98 145 98 134 71 93 45 42+ 45 124+	10 4 43 34+ 10 8 130 188 10 8 39 29+ 10 10 80 115 11 2 42 7+	13 2 85 97 -1 0 226 309 -1 2 92 104 -1 4 175 201 -1 4 135 151		-8 5 44 04 -8 7 49 24 -8 9 53 24 -8 11 55 24 -8 13 51 04	•4 1 •4 3 •4 5 •4 7 •4 7	133 150 109 105

···· ··· ·····························	
	70 FC 32 75 32 35 34 36 44 36 45 36 46 36 33 37 34 36 35 34 46 36 34 36 35 34 36 34 37 34 38 36 39 37 39 37 39 37 39 37 39 37 39 37 39 37 39 37 31 30 31 30 31 30 32 30 33 37 34 30 35 32 34 30 35 32 36 32 37 <
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	x 1-1-1-1-1-27-27-27-27-27-27-27-27-27-27-27-27-27-
	1 1 1 1
	<pre>x 4 4 5 5 5 7 5 4 6 4 4 7 7 7 7 7 8 8 8 9 7 8 13 13 5 7 13 14 14 14 14 14 14 14 14 14 14 14 14 14</pre>
······································	· • • • • • • • • • • • • • • • • • • •
	rg r, rg <
()), 法法, 计一个 法法律 医外外的 化合物 化化合物 化化合物 化化合物 化合物 化合物 化合物 化合物 化合物	C 18568C1818153587637133118398643888115 > 59831498 844

•

Table 5 (cont.)

H K	F0 FC	н с	F0 FC		fa pa		ra	**		F0 FC	н к	• 0	**		•	F0	
-2 7 -2 1 -2 11 -3 13 -3 3 -3 5 -3 7 -3 11	87 67 66 91 91 43+ 118 104 104 100 110 92 98 80 67 76 51 97*	11 3 11 9 11 7 12 1 12 3 12 9 13 1 13 3 13 9	50 10° 50 17° 50 17° 50 63° 51 63° 50 16° 50 16° 50 16° 46 14°	- 3 5 7 8 3 8 7 8 9 8 11 6 13 6 13	103 93 02 81 36 13• 42 12• 46 11• 48 6• 47 9• 67 99	1 11 1 11 2 1 2 3 2 7 3 1 3 3 3 5 3 5 3 5 3 5	-4 47 43 104 94 64 42 43 37 42	33+ 23+ 100 93 82 74 98 75 49+ 44+	2 9 9 11 5 9 11 6 5 5 9 1 8 5 7 7 3 9	44 37. 49 38. 43 23. 37 72. 38 69. 49 93. 49 93. 40 67. 41 47.	10 1 10 5 10 7 10 7 11 1 11 3 11 9 12 1 12 3	-3 42 40 39 42 40 41 40 38	13. 11. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	- 3 3 4 4 4 5 5 5 5	1,91351357	36 39 40 47 33 33 33 35 36 40	
-3 13 -4 1 -4 3 -4 5 -4 7 -4 1 -5 1 -5 3 -5 9	50 63* 123 81 80 7¥ 82 72 60 66 68 82 52 43* 98 104 98 101 70 86	13 9 14 1 14 5 15 1 15 5 15 1 15 1 16 3 16 5	40 11= 40 334 48 50- 46 49- 45 12- 47 12- 41 36- 40 36- 36 30-	7 3 7 5 7 7 8 1 8 3 8 5 8 7 8 9 8 11 8 11	68 97 72 82 77 73 42 13* 44 12* 46 10* 49 8* 49 8* 49 8*	3 P 3 11 4 1 4 3 5 1 5 3 5 3 5 7 7 9 9	47 47 100 47 70 33 30 40 49 47	36+ 27+ 93 87 75 95- 95- 95- 42+ 38+ 38+	B 1 B 3 B 5 9 1 8 3 9 5 9 7 9 7 10 1 10 3	42 64+ 43 61+ 49 53+ 44 38+ 49 38+ 49 39+ 49 33+ 49 33+ 49 51+ 49 51+ 49 51+	12 7 13 1 13 3 14 1 14 3 14 3 14 5 -1 1 -1 3	34 38 34 34 33 73 73 50	43+ 40+ 36+ 7+ 7+ 7+ 42 75	-5 -9 -8 -7 -7 -7 -8	9 11 3 5 1 3 9 1 3 9	30 34 36 30 30 30 30 30 30 40 40	
-5 7 -5 9 -5 11 -6 1 -6 5 -6 7 -6 9 -6 11	44 734 49 854 52 435 43 77 82 78 41 804 40 974 70 934 92 944	17 1 17 3 -1 1 -1 3 -1 7 -1 7 -1 9 -1 11 -1 13	35 12. 33 10. 37 30. 25 35. 46 31 40 20. 47 20. 50 10. 49 13.	9 1 9 3 9 5 10 1 10 3 10 7 10 7 10 9	73 84 69 81 48 72* 47 12* 48 11* 49 9* 49 9* 49 6* 47 9* 40 4*	5 11 5 13 6 1 7 1 7 3 7 5 7 7	46 40 36 39 41 44 47	24+ 22+ 78+ 79 45+ 45+ 45+ 35+ 31+	10 11 11 12 12 13 13 13 13 13 13 13 13 13 13	49 45 49 35 49 37 44 45 44 45 42 37 42 37 41 27 39 25 5	-2 1 -2 3 -2 7 -2 1 -2 1 -3 1 -3 3 -3 5	22 29 36 41 43 61 53 70 52	17. 15. 14. 10. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	-8 -9 -9 -10 -10 -10 -11	513571351	40 40 57 40 39 38 39	
-7 3 -7 3 -8 1 -8 3 -8 5 -8 7 -9 1 -9 1	73 87 61 74 87 97 46 90 49 91 92 60 82 76	-2 1 -2 9 -2 9 -2 11 -3 1 -3 2	118 120 116 121 107 109 88 102 76 82 50 65 34 30 29 30 35 29 42 30	11 1 11 3 12 1 12 3 12 5 12 7 12 0 13 1	68 68 49 54 49 7 49 7 49 6 48 6 48 6 48 4 48 7 41 8 48 7 41 8 48 7 48 7 48 7 48 7 48 7 48 7 48 7 48	7 11 4 1 5 3 6 7 1 1 9 5 10 1	44 42 44 45 46 45 46 46 46 46	21 - 67 - 68 - 76 - 37 - 36 - 33 - 44 -	-1 1 -1 3 +1 7 +1 7 +1 1 +1 13 +2 1 +2 3	49 90 49 94 39 91. 41 46. 45 39. 47 32. 39 23. 57 87 64 78	-4 1 -4 3 -4 9 -4 7 -4 1 -4 13 -5 1 -5 3	30 34 38 42 43 40 31 61 91	17+ 17+ 13+ 10+ 8+ 8+ 8+ 8+ 8+	•11 •11 •12 •12 •12 •13 •13 •13	37, 135135	38 36 37 37 37 33 33 33 32 28	
-9 5 -9 7 -9 9 -9 11 -10 1 -10 3 -10 7 -10 9	48 45+ 51 58+ 52 51+ 49 34+ 47 41+ 48 56+ 50 48+ 52 43+ 51 36+	-3 9 -3 11 -3 13 -3 15 -4 1 -4 3 -4 5 -4 7 -9 1	48 27. 50 20. 48 15. 39 11. 136 130 142 125 96 104 111 89.	14 14 14 14 14 15 15 15 15 15	40 694 46 94 43 64 38 94 43 64 43 64 41 63 38 34 38 34	10 5 11 1 11 3 12 1 12 1 13 1 13 3	47 47 47 47 47 47 43 48 49 43	53- 34- 33- 29- 49- 49- 49- 27- 26- 27- 28-	+2 7 +2 9 +2 11 -2 13 +3 1 +3 9 +3 9	41 67. 49 52. 44 44. 30 31. 37 61 44 56 52 48 42 43.	-5 7 -6 3 -6 3 -6 7 -7 3 -7 3 -7 3	42 37 38 41 43 59 40 42 41	61+ 1'+ 10+ 13+ 11+ 70+ 61+ 15+				
+10 11 +11 1 +11 3 +11 5 +11 7 +12 1 +12 3 +12 5 +12 7	46 28= 50 39= 51 34= 51 34= 51 43= 52 43= 52 40= 51 38=	-5 3 -5 5 -5 11 -5 11 -6 3 -6 3	35 35+ 30 28+ 45 22+ 40 18+ 50 12+ 45 12+ 122 108 65 105 90 92	16 3 16 5 -1 1 -1 3 -1 7 -1 7 -1 7 -2 3	30 60 32 60 100 120 87 107 118 96 76 72 21 190 27 130	•1 1 •1 3 •1 7 •1 7 •1 1 •1 13 •2 3	49 26 41 41 41 43 47 43 104 73	58 534 49 47. 38. 33. 22. 02 02 02	+3 11 +3 13 +4 1 +4 9 +4 7 +9 1 +9 3 +9 9	44 28. 34 22. 87 73 34 87. 39 87. 43 41. 33 40. 36 48. 40 44.	-8 3 -8 9 -8 7 -8 11 -9 1 -9 3 -9 5	42 43 40 53 42 43 43 43 43	14+ 12+ 10+ 9+ 58+ 58+ 58+				
-12 P -13 1 -13 3 -14 3 -14 3 -14 3 -14 5 -14 7 -15 1	47 31+ 52 52+ 51 43+ 51 30+ 50 34+ 46 31+ 45 30+ 46 41+	-7 1 -7 3 -7 5 -7 7 -7 1 -7 1 -8 1 -8 3 +8 5	38 31+ 40 28+ 44 23+ 50 20+ 49 14+ 59 91 70 92 55 43	-2 9 -2 7 -2 11 -3 1 -3 3 -3 9	35 130 41 190 47 130 40 100 137 120 102 113 123 100 69 43	•2 5 •2 7 •3 1 •3 3 •3 5 •3 7 •3 1	74 42 29 43 37 42 47 47 47	80 77. 62. 58 49. 40. 32. 25.	49 7 49 8 49 8 40 1 40 1 40 7 40 7 40 7	44 42, 45 40, 43 27, 37 71, 42 61, 45 52, 45 40,	•10 3 •10 5 •10 9 •11 1 •11 3 •11 3 •12 1	43 42 40 35 42 42 40 41	9. 11. 10. 35. 51. 44. 12.				
•15 3 •16 1 •14 3 •14 5 •17 1 •17 3 •17 5	4? 39+ 44 30+ 30 25+ 38 29+ 37 29+ 37 29+ 32 26+	-8 7 -9 1 -9 3 -9 5 -9 7 -9 1 -9 11 -9 13 -9 1	B0 74 45 21 46 22 50 21 50 18= 48 13= 37 11= 77 84	-3 9 -4 1 -4 3 -4 7 -4 9 -4 11 -5 1	77 80 29 19. 32 19. 38 13. 43 11. 48 11. 49 7. 102 107	•4 5 •4 7 •9 1 •5 3 •5 5 •5 7 •5 1	89 38 97 48 36 40 45 45 45	•1 • 5 • 5 • 5 • 5 • 5 • 6 • 5 • • • • • • • • • • • • • • • • • •		41 40. 44 41. 42 65. 45 51. 44 44. 45 40. 45 30.	-12 5 -12 7 -13 1 -13 3 -13 5 -14 1 -14 5	38 38 38 34 38 34 34 34 34 34 34 34 34 34 34 34 34 34	20 40 40 38 20 38 20 38 20 38				
0 1 0 3 0 5 0 7 0 9	135 13e 127 134 119 111 103 104 85 80	-10 3 -10 5 -11 1 -11 3 -11 5 -11 7 -11 7 -11 1	48 77 50 68= 49 22= 50 19= 50 16= 50 15= 47 13= 40 11=	-5 5 7 -6 3 -6 5 -6 7	89 93 82 83 36 199 42 129 46 99 40 94	+5 13 +6 1 +6 3 +6 5 +7 1 +7 3 +7 5	40 39 42 39 41 44	73- 42 79. 68- 44- 45- 41-	•10 1 •10 3 •15 5 •10 7 •10 9 •11 1 •11 3	45 40. 45 50. 45 47. 44 44. 39 37. 45 37. 45 32.	•••••• 0 1 0 3 0 9	(* 12) 7, 48 33	81 75 89				
1 1 1 3 1 9 1 1 1 1 2 1 2 3	30 37 46 36 33 33- 40 30+ 47 22+ 50 10+ 115 128 147 123	-12 1 +12 3 -12 5 -13 1 +13 5 -13 5 -13 7 -13 7	50 664 51 634 50 574 50 174 50 164 40 144 46 135 40 114	-6 13 -7 1 -7 3 -7 5 -7 7 -8 3 -8 3 -8 5	42 44 87 97 92 89 72 83 67 15+ 44 13+ 46 10+	•7 11 •8 3 •8 5 •6 5 •6 1 •8 9	47 44 42 44 45 47 47 47	33. 21. 70. 68. 59. 59. 91.	•12 3 •12 3 •13 1 •13 3 •13 5	44 41. 42 37. 42 28. 41 26. 39 23.	1 1 1 3 1 9 1 7 1 9 1 11 2 1 2 3	18 27 39 40 31 29 35	18* 17* 19* 12* 8* 7* 7* 7* 7*				
2 7 2 9 2 11 3 1 3 3 3 5 3 5 3 7 3 9 9	105 103 47 82+ 50 60+ 40 45 20 37+ 35 27+ 42 23+ 48 20+	-14 3 -14 5 +15 1 -15 3 -15 5 -16 1 -16 3	48 50 46 40 45 13 42 11 41 39 40 38 36 35	-6 11 -8 13 -9 1 -9 3 -9 5 -10 1 -10 3	40 80 45 40 37 50 63 83 48 71 48 70 48 70	-9 1 -9 3 -10 1 -10 3 -11 1 -11 3 -11 9	43 46 47 48 47 47 47 47 47	40- 38- 33- 59- 52- 34- 33- 39-		11 >>>>> 27 18+ 34 17+ 27 18+ 40 19+ 41 10+	3 1 3 3 3 9 3 9 4 1 4 3 4 9 5 1	20 31 30 30 30 30 30 31 37 33	1/* 14* 11* 11* 71* 71				
3 13 3 15 4 1 4 3 4 5 4 7 4 9	48 13+ 39 11+ 145 152 100 121 129 100 81 87 79 79	-17-3 	13 8. • 8 >>>>> 14 15•	+10 7 +10 7 +10 0 +10 11 +12 1 -12 3 -12 5 +12 7	49 100 49 100 47 90 40 70 40 110 49 80 48 80 48 60	***** (0 1 0 3 0 9	* 11 ×	44 80 73	c 13 1 1 2 1 2 3 2 7	36 7. 44 86 74 83 39 78. 29 20. 30 19. 41 17.	5 3 5 5 5 7 5 1 6 1 6 3 6 3	35 38 40 39 34 36 37 39	13- 14- 12- 10- 2. 89- 80- 52-				
5 3 5 5 7 5 9 5 11 5 13 6 1	32 27+ 39 29+ 39 27+ 49 25+ 50 10+ 46 15+ 78 100	0 3 0 7 0 11 0 13 0 15	27 15. 33 15. 40 13. 46 9. 40 8. 40 8. 46 6. 37 6. 134 132	-12 9 *13 1 -13 3 *14 1 +14 3 *14 5 *14 7	41 40 48 98 48 93 40 48 40 48 40 48 45 60 43 60 38 94	0 7 0 8 1 1 1 3 1 5 1 7 1 9	41 49 41 38 49 41 45	47+ 50+ 45+ 42 53 48 48+ 37+	2 P 2 11 3 3 3 3 4 1 4 3 4 9	43 0. 41 8. 104 91 44 85 60 73 30 19. 34 19. 36 14.	7 1 7 3 7 9 8 1 8 3 8 9 9 1	38 39 39 40 40 40 40	13* 12* 10* 59* 52* 13*				
0 3 6 7 7 1 7 3 7 5 7 7 7 9 7 11	120 100 99 94 84 83 38 28+ 40 27- 44 23- 48 21+ 50 22+ 49 13+	1 9 2 1 9 2 9 2 9 2 9 2 9 9	92 110 123 103 60 96 76 75 21 25= 27 19= 35 12= 47 7=	-19 1 -19 3 -15 5 -16 1 -16 3 -16 5	43 49 41 43 38 39 30 9 30 9 32 4 4	1 11 1 13 2 1 2 3 2 7 2 9 2 11	45 39 51 47 80 41 45 44	33. 22. 87 79 48 62. 92. 43.	4 7 4 9 5 5 6 5 6 5	42 14. 43 14. 61 70 66 77 40 67. 42 61. 37 14. 36 15.	9 5 9 7 10 1 10 3 10 5 11 1 11 3	40 37 40 39 38 39 38 36	10- 7- 40- 47- 4 8- 8- 8- 8-				
8 1 8 3 9 1 9 3 9 7 9 7	70 92 61 90 65 81 45 28* 46 28* 48 21* 50 17* 50 17*	2 11 2 13 3 1 3 5 3 7 4 1 4 3	49 6. 46 9. 112 111 144 110 93 102 109 95 29 10. 32 12.	0 1 0 3 0 7 0 9 0 11	108 98 99 91 68 43 67 78 65 40 47 94	3 1 3 3 3 5 3 7 3 9 3 11 3 13 4 1	48 44 37 42 45 44 38 42	10 13 40. 30. 24. 71		-1 1-+ 43 17+ 39 17+ 40 80+ 42 62+ 41 15+ 42 11+ 43 11+ 43 10+	14 1 12 3 12 5 13 1 -1 1 -1 3 -1 5 -1 9 -1 9	35 33 33 27 34 39	40+ 37+ 17+ 15+ 12+ 9+				
9 13 10 1 10 3 10 5	-0 10+ 37 9+ 47 #3+ 48 78+ 90 \$9+	4 7 4 9 4 11 5 1	43 14+ 43 14+ 48 13+ 49 9+ 125 113	0 13 1 1 1 3 1 5 1 7	43 37. 17 96. 48 93 34 50. 41 47.	4 3 4 5 4 7 9 1 5 3	39 43 33 34	73 48. 42. 97. 93.	8 0 8 11 9 1 9 3 9 9	40 11. 33 7. 47 42. 43 98. 43 53.	-1 11 -2 1 -2 3 -2 5 -3 1	37 51 52 35 26	9. 81 76 45-				

positive or negative regions at ligand atom positions as each ligand was added to the calculation.

Phenyl groups are located immediately above and below each mercury atom, and overlap for mercury atoms in the $y=\frac{1}{4}$ and $\frac{3}{4}$ planes. Difference Fourier syntheses indicate that the appropriate monoclinic space group is *Pm*, having mirror planes in (020). Ph₂Hg moieties in $y=\frac{1}{4}$ and $\frac{3}{4}$ were given half-occupancy and a subsequent difference synthesis had a larger peak in y=0 at $x > \frac{1}{2}$ [Fig. 5(*a*)], and in $y=\frac{1}{2}$ at $x < \frac{1}{2}$ than previously. Packing requirements again indicate the presence of partial occupancy for the Ph₂Hg moieties with mercury atoms in (020), and best agreement between calculated and observed structure factors was obtained with Ph₂Hg occupancies of 0.8 and 0.2, as found for Ph₂Hg(tmp)₂.

This model has a unit cell with the required number of four formula units of $Ph_2Hg(dmp)_2$, and for structure factors calculated for space group Pm, R=0.16for both the 1331 sharp reflexions and the 537 diffuse reflexions, and 0.24 when 1981 unobserved reflexions are included. The structure factor list (Table 5) includes both hk0 and hk0 reflexions, which must be identical for Pm symmetry, to indicate their similarity. Refinement was not attempted with 150 atoms in the asymmetric unit of space group Pm (232 in P1). Tables 6, 7 and 8 show the atomic coordinates, bond lengths and bond angles in $Ph_2Hg(dmp)_2$.

Table 6. Coordinates of atoms of Ph₂Hg(dmp)₂ within the asymmetric unit of space group Pm

The atom numbering scheme is similar to that of $Ph_2Hg(tmp)_2$ (Fig. 2), with methyl groups having carbon atoms C(15) and C(16) and phenyl groups commencing with C(17) and C(23).

	x/a	y/b	z/c	pancy
Mercury po	ositions			
Hg(1)	0.25	0.25	0.75	0.5
Hg(2)	0.75	0-25	0.1196*	0.2
Hg(3)	0.0433	0	0.25	0.8
Hg(4)	0.5433	0.20	0.6196†	0.8
Hg(5)	0.5433	0	0.6196†	0.5
Hg(6)	0.0433	0-50	0.25	0.5

* Given as $ca. \frac{1}{8}$ in discussing the structure solution.

† Given as $ca. \frac{5}{8}$ in discussing the structure solution.

Ligand coordinated to Hg(1)

N(1)	0.0683	0.25	0.8179	1.0
N(10)	0.0928	0.25	0.6384	1.0
C(2)	0.0200	0.22	0.9107	1.0
C(3)	-0.0417	0.22	0.9375	1.0
C(4)	-0.1083	0.25	0.8804	1.0
C(5)	-0.1667	0.25	0.7357	1.0
C(6)	-0.1458	0.25	0.6429	1.0
C(7)	-0.0433	0.25	0.5179	1.0
C(8)	0.0417	0.25	0.4875	1.0
C(9)	0.1200	0.25	0.5429	1.0
C(11)	0.0125	0.25	0.6679	1.0
C(12)	-0.0067	0.25	0.7571	1.0
C(13)	-0.0917	0.22	0.7857	1.0
C(14)	-0.0283	0.25	0.6125	1.0
C(15)	0.1167	0.25	0.9777	1.0
C(16)	0.2125	0.25	0.5134	1.0

Table 6 (cont.)

	xla	v/b	zlc	Occu- pancy
Ligand coc	rdinated to H	g(2)	2/0	panoy
N(1)	0.6000	0.25	0.2321	1.0
N(1)	0.5800	0.25	0.2321	1.0
$\Gamma(10)$	0.6117	0.25	0.2214	1.0
C(2)	0.5422	0.25	0.3214	1.0
C(3)	0.4593	0.25	0.2446	1.0
C(4)	0.2582	0.25	0.2161	1.0
C(5)	0.3363	0.25	0.1250	1.0
C(0)	0.4033	0.25	-0.0232	1.0
C(8)	0.4750	0.25	-0.0768	1.0
C(0)	0.5633	0.25	-0.0393	1.0
C(1)	0.5050	0.25	0.1071	1.0
C(12)	0.5167	0.25	0.1964	1.0
C(13)	0.4433	0.25	0.2536	1.0
C(14)	0.4167	0.25	0.0714	1.0
C(15)	0.7000	0.25	0.3571	1.0
C(16)	0.6333	0.25	-0.0982	1.0
Ligand coc	ordinated to H	g(3)		
N(1)	0.1917	0	0.1339	1.0
N(10)	0.2133	0	0.3250	1.0
C(2)	0.1733	0	0.0446	1.0
C(3)	0.2500	0	-0.0089	1.0
C(4)	0.3333	0	0.0268	1.0
C(5)	0.4250	0	0.1218	1.0
C(6)	0.4200	0	0.2200	1.0
C(7)	0.3792	0	0.3982	1.0
C(8)	0.3125	0	0.4553	1.0
C(9)	0.2292	0	0.4196	1.0
C(11)	0.2833	0	0.2678	1.0
C(12)	0.2667	0	0.1741	1.0
C(13)	0.3417	0	0.1205	1.0
C(14)	0-3700	0	0.30/1	1.0
C(15)	0.0833	0	0.0089	1.0
C(16)	0.1458	0	0.4732	1.0
Ligand coo	ordinated to H	g(4)		
N(1)	0.7233	0.5	0.5464	1.0
N(10)	0.6967	0.5	0.7321	1.0
C(2)	0.7500	0.5	0.4554	1.0
C(3)	0.8367	0.5	0.4241	1.0
C(4)	0.9017	0.5	0.4839	1.0
C(5)	0.9517	0.5	0.0304	1.0
C(6)	0.9333	0.5	0.9464	1.0
C(7)	0.8333	0.5	0.8830	1.0
C(8)	0.7500	0.5	0.0039	1.0
C(9)	0.7800	0.5	0.6087	1.0
C(12)	0.8000	0.5	0.6902	1.0
C(12)	0.8800	0.5	0.5714	1.0
C(13)	0.8500	0.5	0.7571	1.0
C(15)	0.6750	0.5	0-4018	1.0
C(16)	0.5767	0.5	0.8536	1.0
$\mathcal{O}(10)$	00.07	~ ~		- •

- Atoms of ligand coordinated to Hg(5) have coordinates of atoms of ligand coordinated to Hg(3) $+0, \frac{1}{2}, 0$ and occupancy 1.0.
- Atoms of ligand coordinated to Hg(6) have coordinates of atoms of ligand coordinated to Hg(4)+0, $\frac{1}{2}$, 0 and occupancy 1.0.

Phenyl groups bonded to Hg(1)

		- · ·		
C(17)	0.25	0.3967	0.75	0.5
C(18)	0.3283	0.4467	0.7571	0.5
C(19)	0.3283	0.5433	0.7571	0.5
C(20)	0.25	0.5933	0.75	0.2
C(21)	0.1767	0.5433	0.7429	0.2
C(22)	0.1767	0.4467	0.7429	0.2
C(23)	0.25	0.1033	0.75	0.5

1 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ta	ble	6 ((cont.)
---	----	-----	-----	---------

Table 7. Bond lengths in Ph₂Hg(dmp)₂

	rla	•./h	-10	Occu-	(a) Mercury stered	Mercury stereochemistry			
	λ / a	<i>y</i> 10	2/0	pancy	•	Hg(1)	Hg(2)	$H_{P}(3)$	$H_{\sigma}(4)$
C(24)	0.1767	0.0533	0.7429	0.2	H_{α} N(1)	7.07 Å	7.83 Å	2.84 %	2.07 %
C(25)	0.1767	-0.0433	0.7429	0.2	$H_{\sigma-N}(10)$	2.97 A	2.03 A	2.04 A	2.97 A
C(26)	0.25	-0.0933	0.75	0-5	$H_{a} C(17)$	2.10	2.10	2.04	2.00
C(27)	0.3283	-0.0433	0.7571	0.5	$H_{\alpha} C(22)$	2.10	2.10	2.10	2.10
C(28)	0.3283	0.0533	0.7571	0.5	IIg-C(23)	2.10	2.10		
DI 1		TT (A)			(b) Ligands				
Phenyl gro	oups bonded t	:o Hg(2)]	Ligand coor	dinated to:	
C(17)	0.75	0.3967	0.1196	0.2		Hg(1)	Hg(2)	Hg(3)	Hg(4)
C(18)	0.8283	0.4467	0.1196	0.2	N(1) - C(2)	1.38 Å	1.31 Å	1.33 Å	1.39 Å
C(19)	0.8283	0.5433	0.1196	0.2	N(1) - C(12)	1.46	1.39	1.30	1.44
C(20)	0.75	0.5933	0.1196	0.2	C(2) - C(3)	1.47	1.36	1.42	1.41
C(21)	0.6733	0.5433	0.1196	0-5	C(3) - C(4)	1.32	1.41	1.30	1.33
C(22)	0.6733	0.4467	0.1196	0.2	C(4) - C(13)	1.40	1.34	1.37	1.32
C(23)	0.75	0.1033	0.1196	0.5	C(5) - C(6)	1.30	1,34	1.48	1.44
C(24)	0.6733	0.0233	0.1196	0.5	C(5) = C(0)	1.37	1.42	1.36	1.40
C(25)	0.6733	-0.0433	0.1196	0.5	C(6) - C(14)	1.42	1.33	1.40	1.25
C(26)	0.75	-0.0933	0.1196	0.5	C(0) = C(14)	1.38	1.35	1.22	1.35
C(27)	0.8283	-0.0433	0.1196	0.5	C(7) = C(0)	1.40	1.30	1.32	1.40
C(28)	0.8283	0.0533	0.1196	0.5	C(1) = C(14)	1.45	1.77	1.30	1.33
				-	C(0) = C(9)	1-43	1.47	1.39	1.40
Phenyl gro	oups bonded t	o Hg(3)			N(10) = N(10)	1.44	1.31	1.40	1.41
C(17)	0.0433	0.1467	0.2500	0.8	$\Gamma(10) = C(11)$	1.35	1.43	1.30	1.38
C(18)	-0.0417	0.1967	0.2500	0.8	C(11) - C(12)	1.33	1.31	1.39	1.42
C(19)	-0.0417	0.2933	0.2500	0.8	C(11) = C(14)	1.30	1.40	1.45	1.38
C(20)	0.0433	0.3433	0.2500	0.8	C(12) = C(13)	1.38	1.41	1.40	1.32
C(21)	0.1167	0.2933	0.2500	0.8	C(2) = C(15)	1.42	1.40	1.48	1.40
C(22)	0.1167	0.1967	0.2500	0.8	C(9) - C(10)	1.49	1.38	1.20	1.22
					(c) Phenyl groups				
Phenyl gro	oups bonded t	o Hg(4)			(i) =	For	For	For	For
C(17)	0-5433	0.6467	0.6196	0.8		Hg(1)	Hg(2)	Hg(3)	Hg(4)
C(18)	0.4633	0.6967	0.6161	0.8	C(17) $C(18)$	1.41 %	1.40 Å	1.24 %	1.42 8
C(19)	0.4633	0.7933	0.6161	0.8	C(17) = C(18)	1.41 A	1.40 A	1.34 A 1.40	1.43 A
C(20)	0.5433	0.8433	0.6196	0.8	C(17) = C(22)	1.28	1.29	1.29	1.45
C(21)	0.6233	0.7933	0.6232	0.8	C(10) = C(19)	1.41	1-36	1.30	1.42
C(22)	0.6233	0.6967	0.6232	0.8	C(20) = C(20)	1.24	1.29	1.40	1-43
					C(21) = C(21)	1.28	1.29	1.42	1.43
Atoms of	phenyl groups	s bonded to Hg	g(5) have coor	rdinates of	C(23) - C(24)	1.34	1.30	1.20	1.20
the phe	nyl groups of	$Hg(3) + 0, \frac{1}{2}, 0$	and occupar	icy of 0.2 .	C(23) = C(24)	1.34	1.30		

Atoms of phenyl groups bonded to Hg(6) have coordinates of the phenyl groups of $Hg(4) + 0, \frac{1}{2}, 0$ and occupancy of 0.2.

Fig. 6. Projection of the structure of $Ph_2Hg(dmp)_2$ onto (010). The ligand and Ph₂Hg moieties in (020) are shown by bold lines.

C(17) - C(18)	1•41 Å	1·40 Å	1·34 Å	1·43 Å
C(17) - C(22)	1.34	1.38	1.49	1.43
C(18) - C(19)	1.38	1-38	1.38	1.38
C(19) - C(20)	1.41	1.40	1.34	1-43
C(20) - C(21)	1.34	1.38	1.49	1.43
C(21) - C(22)	1.38	1.38	1.38	1.38
C(23) - C(24)	1.34	1.38		
C(23) - C(28)	1.41	1.40		
C(24) - C(25)	1.38	1-38		
C(25) - C(26)	1.34	1.38		
C(26) - C(27)	1.41	1.40		
C(27) - C(28)	1.38	1.38		

In both structure determinations all atoms were

given isotropic temperature factors of 3.0 Å² and scattering factors given by Cromer & Waber (1965) were used. No corrections were made for anomalous dispersion. The full-matrix least-squares program used was that of Busing & Levy (1962) modified by White (1965) to operate on the Monash University CDC 3200 computer. The function minimized was $\sum_{hkl} w_{hkl}(|F_o| - w_{hkl})$ $|kF_c|^2$) for which all reflexions were given unit weight and an overall scale used. Unobserved reflexions were assigned an arbitrary intensity value of one-half of the weakest observed reflexions. The Fourier program was written by White (1965). Powder photographs were obtained using a Philips Debye-Scherrer 114.6 mm powder camera with nickel-filtered Cu Ka radiation.

(a) The superposition structures

Within their respective unit cells, each adduct has two ligands in each (040) plane with Ph₂Hg moieties in

Table 8. Bond angles in Ph₂Hg(dmp)₂

(a) Mercury stereochemistry

	Hg(1)	Hg(2)	Hg(3)	Hg(4)
N(1)-Hg-N(10)	54°	57°	59°	56°
C(17) - Hg - C(23)	90	90		
N(1), $N(10)$ -Hg-C(17),				
C(23)	90	90		
(b) Liganda				
(0) Ligands	T	igands coo	rdinated to	n.
	Hg(1)	Hg(2)	Hg(3)	Hg(4)
$H_{\alpha} = N(1) = C(2)$	1210	117°	114°	128°
$Hg_{}N(1) - C(12)$	123	123	117	120
C(2) - N(1) - C(12)	116	120	129	107
N(1) - C(2) - C(3)	117	121	111	126
N(1) - C(2) - C(15)	122	119	123	107
C(3) - C(2) - C(15)	121	120	126	127
C(2) - C(3) - C(4)	126	119	125	120
C(3) - C(4) - C(13)	118	122	117	116
C(6) - C(5) - C(13)	109	120	125	117
C(5) - C(6) - C(14)	122	118	109	120
C(8) - C(7) - C(14)	118	117	123	124
N(10) = C(8) = -C(8)	109	123	122	110
N(10) - C(9) - C(16)	122	117	111	122
C(8) - C(9) - C(16)	129	120	127	129
Hg - N(10) - C(9)	109	123	123	109
Hg - N(10) - C(11)	127	123	120	124
C(9) - N(10) - C(11)	123	115	117	127
N(10)-C(11)-C(12)	121	118	117	123
N(10) - C(11) - C(14)	125	123	119	121
C(12) - C(11) - C(14)	114	119	124	110
N(1) = C(12) = C(11) N(1) = C(12) = C(13)	125	120	127	12
C(11) = C(12) = C(13)	120	118	113	123
C(4) - C(13) - C(5)	112	122	115	113
C(4) - C(13) - C(12)	118	116	119	125
C(5) - C(13) - C(12)	130	121	127	122
C(6) - C(14) - C(7)	118	117	118	120
C(6) - C(14) - C(11)	125	123	123	123
C(7) - C(14) - C(11)	117	119	119	117
(c) Phenyl groups				
(c) then it groups	For	For	For	For
	Hg(1)	Hg(2)	Hg(3)	Hg(4)
HgC(17)-C(18)	121°	121°	119°	120°
Hg - C(17) - C(22)	122	121	122	120
C(18)-C(17)-C(22)	117	118	119	120
C(17) - C(18) - C(19)	121	121	119	120
C(18) - C(19) - C(20)	121	121	119	120
C(19) = C(20) = C(21)	117	118	119	120
C(20) = C(21) = C(22)	122	121	122	120
H_{g} (22)- $C(21)$	122	121	122	120
Hg = C(23) - C(24)	121	121		
C(24) - C(23) - C(28)	117	118		
C(23) - C(24) - C(25)	122	121		
C(24)-C(25)-C(26)	122	121		
C(25)-C(26)-C(27)	117	118		
C(26) - C(27) - C(28)	121	121		
C(23)–C(28)–C(27)	121	121		

position for coordination of each ligand to form a 1:1 complex [Figs. 4 and 6]. Every second (040) plane has 0.5 occupancy for two Ph₂Hg moieties, and every other (040) plane has 0.8 and 0.2 occupancy for two Ph₂Hg moieties in that plane, giving one Ph₂Hg for every two ligands.

Molecular groups are packed at approximately van

der Waals distances from each other, with ligand planes separated by 3.63 Å in Ph₂Hg(tmp)₂ and 3.57 Å in Ph₂Hg(dmp)₂. Methyl groups in adjacent planes have slightly different x and z coordinates allowing closer approach in the **b** direction, but their x and z coordinates are closer in Ph₂Hg(tmp)₂ than in Ph₂Hg(dmp)₂, possibly accounting for the greater distance between planes in Ph₂Hg(tmp)₂.

Excluding Hg–N distances closest approaches of adjacent mercury and/or ligand carbon atoms in the same (040) plane are 4.17 Å [C(16)–C(18)] and 3.66 Å [C(16)–Hg] in Ph₂Hg(tmp)₂ [Fig. 4(*a*)], and 4.10 Å [C(6)–C(15) and C(7)–Hg] in Ph₂Hg(dmp)₂ (Fig. 6).

(b) The structures of possible ordered regions

The derivation of possible ordered regions from the superposition structure must account for the diffuse lines and Ph_2Hg occupancies. With this requirement, the superposition structure can be most readily discussed in terms of disorder arising from a channel structure similar to the urea-di-n-alkylmercury inclusion compounds.

Inspection of a projection diagram of $Ph_2Hg(dmp)_2$ (Fig. 6) and Fig. 4 indicate that for both adducts there are channels through the ligand structure perpendicular to the planes containing the ligands, and that the channels have appropriate dimensions to allow inclusion of Ph_2Hg moieties aligned with the C-Hg-C unit along the [010] direction. A random distribution of Ph_2Hg moieties, with the constraint that weak Hg-N interaction causes the mercury atoms to lie in (040), would lead to the presence of diffuse lines but without maxima in the lines since this structure would have cell dimensions $a, \frac{1}{2}b, c$. Some degree of ordering of Ph_2Hg occupancies in (020) causes the appearance of maxima in the lines, which have been used to determine occupancies in these planes.

Disordering of crystals is consistent with the solution stability of the adducts. The adducts are completely dissociated in benzene and this may indicate that crystal growth occurs by addition of ligand and Ph₂Hg moieties, rather than addition of complexes. Failure of a Ph₂Hg molecule to add to the growth plane would hardly affect the packing of ligand groups, since the presence of Ph₂Hg does not affect the distance between planes, and the ligands themselves are fairly closely packed in the (040) planes (Fig. 6), and thus mistakes may occur readily with a new ordered region extending from each mistake in crystal growth. A possible ordered region containing one Ph₂Hg moiety in each (040) plane is illustrated in Fig. 7. Ordered regions of this structure have space group P1 for both adducts.

There is no apparent reason why the crystals of each adduct selected for structure determination have the same set of occupancies for Ph₂Hg moieties in (040) when the disorder is explained by either a channel structure or ordered regions related by translations of $\frac{1}{2}b$. One possible explanation is that the composition of each channel is influenced, but not determined, by the composition of neighbouring channels during crystal growth (channel model), or that mistakes during crystal growth have a fixed probability for each adduct. The close similarity of each model is apparent since mistakes in addition of Ph₂Hg moieties give essentially the same result – either a new ordered region displaced by $\frac{1}{2}b$ with ligand positions coincident, or a new channel with Ph₂Hg positions displaced by $\frac{1}{2}b$ but with ligand positions unaltered.

(c) Twinning of disordered crystals of Ph₂Hg(tmp)₂

Preliminary X-ray photographs indicated that disordered crystals of $Ph_2Hg(tmp)_2$ readily form twins, with components related by a mirror plane in a^*b . Fig. 8 indicates that reflection in this plane followed by translation in *ac* leads to perfect coincidence of atom positions within the unit cell of one component.

(d) Symmetry of the molecular packing

The requirements for reflexions to be observed for $Ph_2Hg(dmp)_2$, none of which are required for space group Pm, are explained from the molecular packing. The requirement hk0:h+k=2n results from the presence of an n glide in projection on (001), and the requirement 00l: l=2n results from every *ab* plane having a neighbouring plane $\frac{1}{2}c$ removed containing exactly the same total contribution of C, N, and Hg electron density to the structure factor expression for *Pm*. The requirement 0k0: k = 4n results from a similar situation in all *ac* planes separated by $\frac{1}{4}b$, even though a fourfold screw axis which normally causes this requirement is not present. Inspection of Weissenberg photographs of twinned crystals of Ph₂Hg(tmp)₂ (the data crystal was only mounted about b) reveals the requirement 0k0:k=4n for the components, but since there is no periodicity of $\frac{1}{2}c$ in content of *ab* planes (Fig. 4) the requirement 001: l=2n does not occur.

If the origin of the unit cell is moved to A and translated $\frac{1}{8}b$ for both superposition structures [Fig. 4(a) and Fig. 6] maintaining the directions of axes as before, then atom positions conform to $P\overline{1}$, although atoms of different occupancy are related by centres of inversion.

The molecular structure

In both adducts the C-Hg-C unit of the diphenylmercury moieties is linear, as in the parent mercurial. Mercury-nitrogen distances are $2 \cdot 8 - 3 \cdot 0$ Å for both adducts. For ligands having mercury atoms close to their nitrogen atoms the N-Hg-N angle is *ca*. 54-59°. Since the accuracy of Hg-N distances determined from difference Fourier syntheses is uncertain, it is not possible to ascertain whether the nitrogen atoms are definitely within the sum of van der Waals radii from mercury (3.0 Å with mercury radius of 1.50 Å, or 3.23 Å with the upper limit of 1.73 Å suggested by Grdenic (1965) as a criterion to indicate some form of bonding) and thus whether a mercury-nitrogen interaction is present in the adducts.

Fig. 7. Stereoscopic illustration of a possible ordered cell of Ph₂Hg(dmp)₂ containing a 1:1 'complex' and uncoordinated ligand in each (040) plane. The unit cell is viewed almost normal to (001). The figure was drawn by a Fortran thermal ellipsoid plot program for crystal structure illustrations (Johnson, 1965).

Fig. 8. Orientation of components of twinned crystals of $Ph_2Hg(tmp)_2$. The (010) projection is shown with ligand and Ph_2Hg moieties in (020) drawn with bold lines.

References

- BÄHR, G. & MEIER, G. (1958). Z. anorg. allgem. Chem. 294, 22.
- BUSING, W. R. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- CANTY, A. J. & DEACON, G. B. (1971). Aust. J. Chem. 24, 489.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104.
- DEACON, G. B. & CANTY, A. J. (1969). Inorg. Nucl. Chem. Letters. 5, 183.
- DORNBERGER-SCHIFF, K. & DUNITZ, J. D. (1965). Acta Cryst. 19, 471.
- GRDENIČ, D. (1965). Quart Rev. Chem. Soc. 19, 303.
- JOHNSON, C. K. (1965). *ORTEP*. Report ORNL 3794, Oak Ridge National Laboratory, Tennessee.
- SMITH, A. E. (1952). Acta Cryst. 5, 224.
- WOOSTER, W. A. (1962). Diffuse X-ray Reflections from Crystals, pp. 162, 93. Oxford: Clarendon Press.
- WHITE, J. C. B. (1965). Monash University,